
Mixture of Experts: Mathematical Foundations and

Scaling

Muskula Rahul

As language models expand into the trillion-parameter regime, scaling laws reveal a new bottleneck:
active compute. In dense Transformers, every parameter is activated for every token — an ”always-on”
paradigm that wastes computation on irrelevant pathways, akin to asking every neuron in a brain to fire
upon reading a single word. The Mixture of Experts (MoE) framework resolves this inefficiency through
conditional computation: for each token, only a subset of parameters (experts) is activated. This yields
a model with massive capacity but sublinear compute growth — the essence of sparse scaling.

Introduction: The Limits of Dense Intelligence

Formally, given input token representations x ∈ Rd, a dense feedforward layer y = W2 · σ(W1x) is re-
placed with a mixture of M expert functions {E1, . . . , EM}, each parameterized by distinct weights
θi = (W1,i,W2,i). The fundamental challenge in modern AI scaling is that traditional dense architectures re-
quire every parameter to be activated for every computation, leading to exponential growth in computational
requirements as models scale. MoE architectures elegantly sidestep this limitation by introducing sparsity
at the architectural level, allowing models to maintain massive capacity while keeping computational costs
manageable.

Mathematical Formulation of MoE Layers

An MoE layer computes:

y =

M∑
i=1

gi(x) · Ei(x)

where:

• Ei(x) = W2,i · σ(W1,ix) is the i-th expert, and

• gi(x) are gating weights produced by a learned router.

The gating function is typically a softmax-normalized linear projection:

g(x) = Softmax(Wgx)

To enforce sparsity, only the top-k gating values are retained:

g̃i(x) =

{
gi(x), if i ∈ Top-k(g(x))

0, otherwise.

Thus, only k out of M experts are active per token:

y =
∑

i∈Top-k(g(x))

g̃i(x) · Ei(x)

When k ≪ M , compute per token remains roughly constant while representational capacity scales linearly
with M . This mathematical formulation is the cornerstone of MoE’s efficiency, enabling the decoupling of
model capacity from computational requirements.



neuralnets.dev Muskula Rahul

Conditional Computation and the Economics of Sparsity

The brilliance of MoE lies in its decoupling of capacity and compute. Let:

• Cdense = FLOPs per token for a dense layer

• Cmoe = FLOPs per token for an MoE layer

Then:
Cmoe ≈ k · Cdense

Increasing the number of experts M expands total capacity without increasing active compute — only mem-
ory grows. For example, GLaM (Du et al., 2022) (1.4T parameters, 97B active) matches GPT-3 quality
(175B dense) with roughly 3× lower compute cost.

Key insight: MoE achieves quadratic growth in model capacity with only linear growth in computa-
tional cost — the foundation of scalable trillion-parameter intelligence. This economic efficiency makes MoE
architectures particularly attractive for organizations seeking to push the boundaries of model scale without
proportionally increasing their computational infrastructure.

Routing Dynamics and Expert Specialization

During training, the router learns to assign tokens to experts that minimize loss, leading to emergent special-
ization: experts become attuned to syntactic, semantic, or modality-specific patterns. For token xt, routed
to experts Ei1 , Ei2 :

X =

M⋃
i=1

Xi, where Xi = {xt : gi(xt) > 0}

This induces a soft partition of the input space — reminiscent of vector quantization or neural clustering.

Router Entropy and Expert Diversity

Router entropy quantifies specialization:

H(G) = − 1

T

T∑
t=1

M∑
i=1

gi(xt) log gi(xt)

A healthy router maintains H(G) ≈ log(M)− ϵ. Low entropy signals expert collapse, where a few dominate
routing. Visualization often reveals experts specializing in tasks like numerical reasoning, dialogue tone, or
code syntax — an emergent modularity that defines MoE behavior. The emergence of specialized experts
is one of the most fascinating aspects of MoE architectures. Without explicit supervision, the routing
mechanism naturally discovers functional decompositions of the task space, creating a diverse ensemble of
specialized sub-networks that collectively achieve superior performance.

https://neuralnets.dev
https://arxiv.org/abs/2112.06905


neuralnets.dev Muskula Rahul

Load Balancing and Routing Regularization

A key challenge is expert imbalance, where some experts dominate while others remain idle. To address
this, training includes a load-balancing loss:

Lbalance = λM

M∑
i=1

fipi

where:

• fi: fraction of tokens routed to expert i

• pi: average gating probability for expert i

• λ: regularization coefficient

This encourages uniform expert utilization, achieving fi = pi = 1/M at equilibrium.

Routing Paradigms and Trade-offs

Approach Description Key Advantage

Noisy Gating Adds Gaussian noise to gating logits Encourages exploration
Switch Routing Uses k = 1 expert per token Simplifies merging, improves scalability
Hash Routing Uses deterministic hashing Zero routing overhead, reproducible
Expert Choice Experts select tokens Perfect load balancing, no token drops

The Expert Choice paradigm reverses routing: experts choose tokens based on affinity scores, ensuring
uniform utilization but non-uniform coverage. Each routing paradigm presents unique trade-offs between
computational efficiency, load balancing, and model quality, requiring careful consideration based on the
specific application requirements.

Training Dynamics: Capacity, Dropping, and Gradients

Expert Capacity and Token Dropping

MoE layers impose capacity limits:

expert capacity =

⌈
C · tokens per batch

M

⌉
When overloaded, tokens are dropped:

x̃i =

{
x, if position in queue(x,Ei) ≤ capacity

0, otherwise.

Dropping > 10% of tokens can degrade quality. Remedies include larger capacity factors, dropout-style
regularization, or expert-choice routing.

Gradient Flow and Non-Differentiable Routing

The Top-k operation is non-differentiable, so Straight-Through Estimators (STE) are used during
backpropagation:

∂L
∂Wg

=
∑
x∈B

∂L
∂y

· ∂

∂Wg

[
M∑
i=1

gi(x)Ei(x)

]

https://neuralnets.dev


neuralnets.dev Muskula Rahul

Despite its bias, the STE approach works well — routers stabilize early, yielding consistent expert assign-
ments. The practical success of STEs in MoE training demonstrates that gradient estimators need not be
unbiased to be effective, provided they preserve the essential structure of the optimization landscape.

Distributed Systems and Communication Patterns

Scaling MoE requires efficient distributed execution. Each expert typically resides on a separate device
(GPU/TPU), with communication dominated by all-to-all token exchange:

1. Tokens assigned to experts (routing)

2. Tokens reshuffled (all-to-all)

3. Experts process locally

4. Results reshuffled back

Communication cost grows as:

Ccomm ∝ T

Nd
logNd

Inference and Memory Bandwidth

At inference, FLOPs are saved but wall-clock time may not improve — loading expert weights from memory
often dominates:

time ≈ bytes loaded

bandwidth
+

FLOPs

throughput

Optimizations such as hierarchical routing, expert caching, and parallel dispatch mitigate but do
not eliminate this bottleneck. The memory bandwidth constraint represents a fundamental challenge for
MoE inference, particularly in latency-sensitive applications where the theoretical FLOP reduction may not
translate to proportional speedups.

Empirical Behavior and Scaling Laws

Model Active Params Total Params Relative Compute Quality

GPT-3 175B 175B 1.0× Baseline
Switch Transformer 97B 1.6T 0.28× ≈ GPT-3
GLaM 97B 1.4T 0.33× ≈ GPT-3
DeepSeek-MoE 60B 1.3T 0.25× > GPT-3 (CN)

MoE performance follows a modified scaling law:

L ∝ (Nactive)
−α

indicating that active parameters, not total parameters, drive generalization. Expanding total capacity
still helps by enabling more specialized routing without increasing compute per token.

https://neuralnets.dev


neuralnets.dev Muskula Rahul

Variants and Emerging Architectures

Type Description Representative Work

Hierarchical MoE Multi-level gating GShard (Lepikhin et al., 2020)
Task-Level MoE Experts shared across tasks MMoE (Ma et al., 2018)
Attention-MoE Routing inside attention heads Routing Transformer (Roy et al., 2021)
Dynamic MoE Variable experts per token DySparse (2023)
Continual MoE Incremental expert growth Adaptive Routing (2024)
Continuous MoE Differentiable top-k Soft MoE (2023)

Continuous MoE

Differentiable top-k relaxations allow gradient flow without STE:

g̃i(x) = σ

(
zi − τ

ϵ

)
This continuous formulation moves MoE closer to modular cognition — systems that compose expertise
dynamically. The exploration of continuous relaxations represents an important direction for making MoE
architectures more amenable to end-to-end optimization and theoretical analysis.

Open Research Directions

The field of MoE architectures continues to evolve rapidly, with several promising research directions:

1. Differentiable Expert Selection — Continuous relaxations vs. gradient estimators

2. Expert Drift and Forgetting — Maintaining specialization without starvation

3. Routing Robustness — Stabilizing noisy or abrupt route changes

4. Inference Optimization — Efficient caching and batch routing

5. Hierarchical & Compositional Routing — Coarse-to-fine expert selection to reduce overhead

Toward Modular and Compositional Intelligence

MoE is more than a computational trick — it is a paradigm shift toward modular cognition. Instead of
monolithic networks, MoE embodies a society of minds: dynamic subnetworks cooperating through learned
routing. Future systems may feature:

• Meta-learning routers that adapt across domains

• Causal routing forming DAGs of computation

• Interpretable specialization for transparent capability mapping

• Dynamic expert growth for lifelong learning

Here, routing becomes program synthesis — the model builds a computation graph on the fly, guided by
context. This vision of compositional intelligence represents a fundamental shift in how we conceptualize
and build AI systems, moving from static architectures to dynamic, context-dependent computation graphs.

https://neuralnets.dev
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/1806.08130
https://arxiv.org/abs/2003.05997
https://arxiv.org/abs/2310.09424
https://arxiv.org/abs/2403.02826
https://arxiv.org/abs/2308.03763


neuralnets.dev Muskula Rahul

Conclusion

Mixture of Experts architectures redefine large-scale model design through conditional computation. By
activating only relevant experts per token, MoE achieves:

• Quadratic capacity growth with linear compute

• Emergent modularity and specialization

• Practical scalability beyond dense Transformer limits

• A foundation for compositional, modular intelligence

The mathematics are elegant; the engineering, challenging; the implications, transformative. As we approach
the frontier of trillion-parameter AI, MoE reminds us:

Intelligence is not about activating every neuron — but knowing which ones to activate.

Key References

• Shazeer et al. (2017) — Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer

• Lepikhin et al. (2020) — GShard: Scaling Giant Models with Conditional Computation and Automatic
Sharding

• Fedus et al. (2021) — Switch Transformers: Scaling to Trillion Parameter Models with Simple and
Efficient Sparsity

• Du et al. (2022) — GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

• Zhou et al. (2022) — Mixture-of-Experts with Expert Choice Routing

• Roller et al. (2021) — Hash Layers for Large Sparse Models

https://neuralnets.dev
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2202.09368
https://arxiv.org/abs/2106.04023

